Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation

نویسندگان

  • Victor X.D. Yang
  • Maggie L. Gordon
  • Alvin Mok
  • Yonghua Zhao
  • Zhongping Chen
  • Richard S.C. Cobbold
  • Brian C. Wilson
  • I. Alex Vitkin
چکیده

Significant improvements are reported in the measurable velocity range and tissue motion artefact rejection of a phase-resolved optical coherence tomography and optical Doppler tomography system. Phase information derived from an in-phase and quadrature demodulator is used to estimate the mean blood flow velocity by the Kasai autocorrelation algorithm. A histogram-based velocity segmentation algorithm is used to determine block tissue movement and remove tissue motion artefacts that can be faster or slower in velocity than that of the microcirculation. The minimum detectable Doppler frequency is about 100 Hz, corresponding to a flow velocity resolution of 30 lm/s with an axial-line scanning frequency of 8.05 kHz and a mean phase change measured over eight sequential scans; the maximum detectable Doppler frequency is 4 kHz (for bi-directional flow) before phase wrap-around. 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator.

We demonstrate extended axial flow velocity detection range in a time-domain Doppler optical coherence tomography (DOCT) system using a modified Kasai velocity estimator with computations in both the axial and transverse directions. For a DOCT system with an 8 kHz rapid-scanning optical delay line, bidirectional flow experiments showed a maximum detectable speed of >56 cm/s using the axial Kasa...

متن کامل

Title Doppler Frequency Estimators under Additive and MultiplicativeNoise

In optical coherence tomography (OCT), unbiased and low variance Doppler frequency estimators are desirable for blood velocity estimation. Hardware improvements in OCT mean that ever higher acquisition rates are possible. However, it is known that the Kasai autocorrelation estimator, unexpectedly, performs worse as acquisition rates increase. Here we suggest that maximum likelihood estimators (...

متن کامل

Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity.

We have developed a novel phase-resolved optical coherence tomography (OCT) and optical Doppler tomography (ODT) system that uses phase information derived from a Hilbert transformation to image blood flow in human skin with fast scanning speed and high velocity sensitivity. Using the phase change between sequential scans to construct flow-velocity imaging, this technique decouples spatial reso...

متن کامل

Frequency domain phase - resolved optical Doppler and Doppler variance tomography

Frequency domain phase-resolved optical Doppler tomography (ODT) was developed with Doppler variance imaging capability. It is shown that utilizing the frequency domain method, phase-resolved ODT can achieve much higher imaging speed and velocity dynamic range than the time domain method. Structural, Doppler and Doppler variance images of fluid flow through glass channels were quantified and bl...

متن کامل

Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography.

The Doppler bandwidth extracted from the standard deviation of the frequency shift in phase-resolved functional optical coherence tomography (F-OCT) was used to image the velocity component that is transverse to the optical probing beam. It was found that above a certain threshold level the Doppler bandwidth is a linear function of flow velocity and that the effective numerical aperture of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002